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Abstract

This report gives an introduction to the basic concepts and principles involved in the formulation
of nonlinear problems in solid mechanics. By way of motivation, the discussion begins with a
survey of some of the important sources of nonlinearity in solid mechanics appliations, using
wherever possible simple one dimensional idealizations to demonstrate the physical concepts.
This discussion is then generalized by presenting generic statements of initial/boundary value
problems in solid mechanics, using linear elasticity as a template and encompassing such ideas
as strong and weak forms of boundary value problems, boundary and initial conditions, and
dynamic and quasistatic idealizations. The notational framework used for the linearized problem
is then extended to account for finite deformation of possibly inelastic solids, providing the
context for the descriptions of nonlinear continuum mechanics, constitutive modeling, and finite
element technology given in three companion reports.
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Introduction

Introduction

We begin our study of nonlinear computational solid mechanics in this chapter by surveying
some frequently encountered sources of nonlinearity in engineering mechanics. This will be done
in a rather elementary way by discussing the truss member, which is perhaps the simplest
structural idealization and which is assumed to transmit loads in the axial direction only. By
introducing various nonlinearities into this system one at a time, we will motivate the more
general discussion of nonlinear continuum mechanics, constitutive modeling, and numerical
treatments to follow. This model system will serve as a template throughout the text as new
continuum mechanical and computational ideas are introduced.

Following this motivation will be an introduction to the prescription of initial/boundary value
problems in solid mechanics. This introduction will be provided by discussing a completely
linear system; namely, linear elastic behavior in a continuum subject to infinitesimal
displacements. This treatment will include presentation of the relevant field equations, boundary
conditions, and initial conditions, encompassing both dynamic and quasistatic problems in the
discussion. Also featured is a brief discussion of the “weak” or “integral” form of the governing
equations, providing a starting point for application of the finite element method. Examination of
these aspects of problem formulation in the comparatively simple setting of linear elasticity
allows one to concentrate on the ideas and concepts involved in problem description without the
need for an overly burdensome notational structure.

In anticipation of nonlinear solid mechanics applications, however, we will find it necessary to
expand this notational framework so that large deformation of solids can be accommodated.
Fortunately, provided certain interpretations are kept in mind, the form of the governing
equations is largely unchanged by the generalization of the linear elastic system. This chapter
therefore provides an introduction to how this generalization can be made. However, it will be
seen that the continuum description and constitutive modeling of solids undergoing large
deformations are complex topics that should be understood in detail before accompanying
numerical strategies are formulated and implemented. The closely related topics of nonlinear
continuum mechanics and constitutive modeling will therefore be the subjects of the following
two chapters, with significant discussion of numerical strategies being deferred to Finite
Elements.

This introduction is concluded with a short list of references the reader may find useful as
background material. Throughout the text we assume little or no familiarity with either the finite
element method or nonlinear solid mechanics, but we do assume a basic level of familiarity with
the mechanics of materials, linear continuum mechanics, and linear elasticity. Accordingly, these
basic references are intended for those readers wishing to fill gaps in knowledge.
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Other Reading

The following resources are suggested for those readers wishing to reinforce their knowledge of
linear elasticity, elementary continuum mechanics, and/or fundamentals of solid mechanics. They
are presented in alphabetical order, with no other significance to be attached to the order of
presentation.

Fung, Y.C., 1965

Fung, Y.C., 1977

Hughes, T.J.R., 1987

Lai, W.M, Rubin, D. and Krempl, E., 1993
Malvern, L.E., 1969

Pilkey, W.D. and Wunderlich, W., 1994
Timoshenko, S. and Goodier, J.N., 1970
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Nonlinear Behavior

Linear Structural Component

We consider the simple axial (or in structural terms, truss) member shown schematically in
Figure 1.1. We can think of this member as a straight bar of material whose transverse
dimensions are small compared to its overall length and which can only transmit loads in the
axial direction. Real world examples include taut cables in tension, truss members, and similar

rod-like objects.

u(x)

x =0 X =Lg
Figure 1.1  Axial model problem: schematic and local coordinate system.

We index the material with coordinateswhich run between valu€sandL, . Assuming that all

displacement of the rod occurs in the axial direction, we write this displacememrttas with
t signifying time. Thenfinitesimal or engineeringstrain at any poinx U (0, L) is given by

ee(x,t) = %u(x,t ). (1.1)

Thetrue stresso; at any point in the bar and at any instant is described via

P(x,t)
A(x,t)’

or(x,t) = (1.2)

whereP is the total axial force acting at locatimnandA is the current cross-sectional area at
that location. If the cross-sectional area does not change very much as a result of the
deformation, it is appropriate to define timminal orengineeringstressas

- P(x.t)

Og = AO(X) ) (13)
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whereAy(x) is the initial cross-sectional area at point the material behaves inliaear

elasticmanner, theww anek.  are related via

og = Eeg, (1.4)
whereE is theelastic modulusorYoung’s modulygdor the material.

To begin we consider the casestdtic equilibriumwhere inertial effects are either negligible or
nonexistent, and the response is, therefore, independent of time. One can in this case suppress the
time argument in Egs. (1.2) and (1.4). The balance of linear momentum for the static case is
expressed at each poinby

(Ag)o(x) = &), (L5

wheref is theapplied external loadingassumed to be axial, with units of force per unit length.
Substitution of Eq. (1.4) into (1.5) gives the following ordinary differential equatiom(xgron

the domain(0, L) :

dEadwl =1 (1.6)

If we assume that the cross-section is uniform, soApat  does not vawy, aittl that the

material ishomogeneoyso thate does not vary throughout the rod, one gets further
simplification:

2
EAc-u(x) = T . (1.7)
dx

We note that (1.7) is a linear, second order differential equation for the unknown displacement
field u. To pose a mathematical problem that can be uniquely solved, it is necessary to pose two
boundary conditionsn the unknowm. We will be interested primarily in two types,

corresponding tprescribed displacemeandprescribed forcgor stress) boundary conditions.

An example of the former would be

u(0) = u, (1.8)
while an example of the latter is

0e(Ly)= Eg_;*((LO) - 5, (1.9)

whered andd are prescribed values for the displacement and axial stress at the left and right
bar ends, respectively. In mathematics parlance the type of boundary condition in (1.8) is called a
Dirichlet boundary condition, while the sort of boundary condition represented by (1.9) is a
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Neumanrboundary condition. Dirichlet boundary conditions involve the unknown dependent
variable itself, while Neumann boundary conditions are expressed in terms of its derivatives.

Virtually any combination of such boundary conditions can be applied to our problem, but only
one boundary condition (i.e., either a Neumann or Dirichlet condition) can be applied at each
endpoint. In the case where Neumann (stress) conditions are applied at both ends of the bar, the
solutionu(x) is only determinable up to an arbitrary constant (the reader may wish to verify this
fact by applying separation of variables to Eq. (1.7)).

We now consider a particular case of this linear problem we have posed that will be useful in
considering some of the various nonlinearities to be discussed below. In particular, suppose

f = 0 onthe domair{0, L,) , and furthermore consider the boundary conditions

u=~0atx =0 (1.10)
and
I:eXt
Og = 7“—0— atx =L, (1.11)

whereF®™" is an applied force on the right end of the rod.

In this case examination of Eq. ,,,(1.5) yields

Ao (Ge(x) = 0, (1.12)

meaning thatb does not vary along the length of the rod. Sipce is proportiepal to  (see

Eqg. (1.4)), the strain must also be a constant value along the rod length. Finally, in view of Eq.
(1.1), we conclude that(x) must vary linearly with. In other words, we know that the solution
u(x) must take the form

u(x) = u(0)+dox = ox, (1.13)
whered is the elongation or difference between the left and right end displacement. The problem

therefore reduces to finding the elongation produced by the applied:%?ce

This problem is trivially solved and leads to the familiar linear relationship bet®éen &: and

E
s = Fo. (1.14)
LO

E
in other words, we have a simple linear spring with stiﬁnﬁég . After solvirlgdoe may
0

merely substitute into (1.13) to obtain the desired expressia(Xpr

Theory Manual Formulation of Nonlinear Problems - Nonlinear Behavior - Linear Structural Component 5



Material Nonlinearity

We can examine the case of a so-cafttederial nonlinearityby replacing Eq. (1.4) with the
following generic relationship betweery  and

og = 6(gp), (1.15)

whered is a smooth and generally nonlinear function (see Figure 1.2).

We make few restrictions on the specific formdof  other than to assun‘%ihato for all

values ofe.. If we retain the assumption thiat= 0 and impose boundary conditions (1.10) and
(1.11), then Eq. (1.12) is still valid, that is:

o = (1.16)

Fex
Ag
throughout the rod.

Furthermore, since we assume that a one-to-one relation exists betweene,, \madan
conclude that just as in the linear case, the strain is a constant value in the rod given by

g = (1.17)

1)
LO-

A O

~

o(x)

\

Figure 1.2  Schematic of a nonlinear, one-dimensional stress-strain relation.

We can solve the problem by findidgs before, but now we must solve the nonlinear equation

~10] _ pext

AOGELOD (1.18)
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Let us reexpress Eq. (1.18) as an equation for the displacement at the right end, which we shall
denote agl, = u(L) .We can write

N(d,) = F*, (1.19)

whereN(d, ) is a nonlinear function of the unknodjn defined in this case as

N(d,): = Aoégi—oLH (1.20)

In general, Eq. (1.20) will not have a closed-form solution, and some sort of iterative procedure
is necessary. Among the most common and widely used of such procedNgedas-Raphson
iteration. In this method one introduces a set of indicesorresponding to the iterations and

given a current iterateili_ , a first-order Taylor series expansion of (1.20) is utilized to generate

the next iterated| *1
_ eXt 1 t
0= F¥'-N(d] *1) = Fext— HN(d )+d0I N(d})ad,H, (1.21)

where
di *1=d| +Ad,. (1.22)
Equation (1.21) can be expressed more compactly via
K(d!)Ad, = R(d}), (1.23)
whereR(d} ) , theesidualor out-of-balance forceis given by
R(d}): = F&I—N(d!), (1.24)

andK(d} ) , théncrementabr tangent stiffnesss written as
K(d!):= dd ——N(d}). (1.25)

The Newton-Raphson procedure is then carried out by recursively solving Egs. (1.23) and (1.22).
We will return to this general algorithmic strategy, and variants of it, repeatedly throughout the
text.

Theory Manual Formulation of Nonlinear Problems - Nonlinear Behavior - Material Nonlinearity 7



Geometric Nonlinearity

Geometric nonlinearitieare induced by nonlinearities in the kinematic description of the system
at hand. We will identify and work with several nonlinearities of this general type throughout the
text, but to begin we will consider two particular cases, still working in the context of our simple
model problem.

The first type of nonlinearity we consider is introduced by the use of nonlinear strain and stress
measures in definition of the stress-strain relation. As an example let us consider alternatives to

Egs. (1.1) and (1.3), which defined the engineering stgain - and engineeringstress that we

have utilized to this point. When used in our model problem fvith O and boundary
conditions (1.10) and (1.11), we have seen that the engineering strain does not vary over the rod’s

length, having the constant valtrae . The appropriateness of this strain measure depends upon
0

the amount of deformation; specificallyshould be infinitesimal for this measure to be
appropriate. In the presence of larger deformationdrulecor logarithmic strain is often used:

_Ady _,Obpo

& = Ly log[l__OD = log(1+egg). (1.26)

Similarly if the cross-sectional aréechanges appreciably during the process, it is likely that the
engineering stress  should be replaced by the true styess defined in Eq. (1.2). In the case of

our model problem, this would imply

FeXt

Or = T, (127)

whereA is to be interpreted as the cross-sectional area in the final (deformed) configuration.

Relating this area to the elongatidrequires a constitutive assumption to be made. For example,
if we assume the rod consists of an isotropic elastic material, we could approximate this variation
by considering the area to vary according to Poisson’s effect. This would require that for each

differential incrementle; in the axial true strain, each lateral dimension should be changed by a

factor of (1 -vdeg) , where is Poisson’s ratidfor the material. At a given instant of the loading
process, therefore, an incremental change in thefacaa be approximated via

A+dA = (1-vde;)°A= (1-2vde )A. (1.28)
Integrating (1.28) between the initial ardg  and the final area and using (1.26) gives

2V

2v L
A= Aog'rqg = AO%_OES% . (1.29)
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If we assume that
o7 = Egq, (1.30)

then we can use Egs. (1.26), (1.27), and (1.29) to conclude that

EAUEL +51 Iogd_0+§] & (1.31)

which is an obviously nonlinear equation governing the elongatibiote that this nonlinearity
is not caused by any sort of nonlinear stress-strain relation but instead results from the
observation that the amount of deformation may not be small, necessitating more general
representations of stress and strain.

The second sort of nonlinearity we wish to consider is that caused by large superimposed rigid
body rotations and translations that introduce nonlinearities into many problems even when the
strains introduced into the material are well-approximated by infinitesimal measures. Toward this
end we refer to Figure 1.3, in which we imbed our one-dimensional truss element in a two-
dimensional frame. We locate one end of the rod at the origin and consider this end to be pinned
so that it is free to rotate but not to translate. The other rod end, initially located at coordinates

(x(l), xg) , Is subjected to a (vector valued) fore®" , which need not be directed along the axis
of the rod.

Figure 1.3  Model problem with infinitesimal motions superposed on large
rigid body motions.

We note that if we placed a restriction of small motions this problem would be ill-posed; since

the rod is incapable of transmitting anything but axial foFc':sét, would need to act in the axial
direction in this case. In the current context we allow unlimited rotation to take place with the

result being, of course, that the rod will rotate until it aligns Vil in its equilibrium
condition. In fact, this observation allows us to guess the solution to the problem. Since we
assume that the axial response of the rod is completely linear, we may deduce that the final
elongation is given by

Theory Manual Formulation of Nonlinear Problems - Nonlinear Behavior - Geometric Nonlinearity 9



CLlF
5= = vl (1.32)

where|F®| denotes the Euclidean length of the vegf8r . The final orientation of the rod
must coincide with the direction & , SO we can write the final position of the rod end using

the coordinatesxfl, sz) as:

f ext
X1 LO [l ”Fext"D
al 1.33
X} "o Bl ox (1.33)
or writing the solution in terms of the rod end displacemdnts  dand
d,| Lo U ”Fext"D et 2
!dz] [Fl8 " ER o | | o (134
X2

It is instructive to proceed as though we do not know the solution summarized in (1.34) and
formulate the equilibrium equations governitg ahd

If we observe that the elongatidrof the rod can be written as

2 2
5 = J(d1+x$) +(dy+x9) — Ly, (1.35)
then Eq. (1.32) gives the relationship betwieR and the unknown displacements.
Furthermore, as noted above, the directiof of Is given by
ext + 0
F_ - ! di*xy (1.36)

”FeX[" A/(d1+x2)2+(d2+xg)2 d2+Xg |

Combining these facts gives the equation that govéins dand

2 2
I:1ext J(dl+xg) +(d2+X(2)) —L0 d1+x(1)
= EAy )
0.2 0.2 0
Loa/(dg+Xx7) +(d,+X5) d, + X,

(1.37)

F2

The reader may wish to verify this equation by substituting the solution (1.34) into (1.37).
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Equation (1.37) is a nonlinear, vector-valued equation for the unkndyvns d,and . Recalling

the generic form for nonlinear equations we introduced in the one-dimensional case in (1.19), we
could write this generically as

N(d) = F™, (1.38)

d
d=|1 .39
H 139

where

and

0,2 0,2
A/(d1+x1) +(dy+x5) —Lg d1+x§

0

1.40
= I (1.40)
Loy (dy+x7) +(dy+X5) 2t X5

N(d) = EA,

Just as was done in the last section for the one degree of freedom case, we could introduce a
Newton-Raphson strategy to solve (1.38) via

K(d')Ad = R(di) = FeXt—N(di) (1.41)
and
di *1 =di +Ad, (1.42)
where
oN; oN;
k(d') = Mgy = |29 % (1.43)
od; 9d,|
B “ld=d'
Carrying out the calculation cb((di )  for the specifi¢d) at hand gives
K(d') = Kgree(d') + Kgeon(d'). (1.44)

Kgrec(d') is given by
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A.E

g)><
| [(dy + X + (A +xD)T
Kairee(d ) = . . . X (1.45)
@ 1+x)°  (d'1+x%@ 2+ x9)
(d1exd2+x)  (d2+xY’
andK eon(d') is
K ”mb-aﬁai— 1 ﬂ}ﬂ (1.46)
onfd) = 0|10 |
’ do J(dl+x‘i)2+(d2+xg)zm 01

As the notation suggestiS;;, ... IS sometimes referred to aliréloe stiffnesor that part of the

stiffness emanating directly from the material stiffness of the system atl{)g%gg(di ) , on the

other hand, is sometimes called gemetric stiffnesand arises not from the inherent stiffness
of the material but by virtue of the large motions that the current problem allows.

To gain some insight into these issues in the current context, consider the case where

||di || « ||x0|| ; 1.e., the case where the motions are small in comparison to the rod’s length. In this
case we find

Kgeonfd') = 0, (1.47)

and

Kdirect( q ) cos®©cos® cosPsin® (1.48)

Lo | cos®sin® cosOcosO|

[X
where®© = atarﬂ-% is the angle between the original axis of the truss member and the positive
RS
x-axis. In other words, when the motions become small, the geometric stiffness vanishes, and the
direct stiffness becomes the familiar stiffness matrix associated with a two-dimensional truss
member.
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Contact Nonlinearity

A final type of nonlinearity we wish to consider is that created due to contact with another
deformable or rigid entity. As a simple model problem for this case, we refer to Figure 1.4, where

we consider a prescribed motidn  of the left end of our one-dimensional rod and consider the
unknown displacemeiat of the right end to be subject to the constraint

g(d) = d-gy=<0, (1.49)

whereg,, is the initial separation, gap, between the right rod end and the rigid obstacle.
do ' ngld
Obstacle

d d
Figure 1.4  Schematic of the rigid obstacle problem.

Even if we assume that the motions are small and the material response of the rod is elastic, the
equations governing the response of our rod are nonlinear. To see this, let usic®ose

unknown and construct the following residir{ld) for our system

AE _
R(d) = L—(d —d)+F., (1.50)
0
whereF_ , the contact force between the obstacle and the rod (assumed positive in compression),

is subject to the following constraints:
F.=0; g(d)<0 and F.g(d) =0. (1.51)

Equations (1.51) are callé&dihn-Tucker conditionsn mathematical parlance and physically
require that the contact force be compressive, that the rod end not interpenetrate the obstacle, and

that the contact force only be nonzero wiges 0 ; i.e., when contact between the rod and
obstacle occurs. In fadk, is a Lagrange multiplier in this problem, enforcing the kinematic

constraint (1.49). We see that the condition operating on the right end of the bar is neither a
Dirichlet nor a Neumann boundary condition; in fact, both the stress and the displacement at this
point are unknown but are related to each other through constraints (1.51).

Plots of the residual defined by (1.50) and (1.51) are given in Figure 1.5 for the two distinct cases
of interest: where contact does not occur (i.e., whem, ) and where contact does occur (when

d =g,). The solutions (i.e., the zerosR)fare readily apparent. When no contact occurs,
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d = d, while in the case of contaat, = g, . The internal stresses generated in the bar are then
readily deduced.

One may note from Figure 1.5 some important practical features of this problem. First, in both
cases the admissible region brs restricted to be less thag . Second, at the vhleeg ,
each diagram shows the residual to be multiple-valued, which is a direct consequence of the fact
that in this condition (i.e., wheg = 0 F. can be gogitive number.

d g, d

/ 9o
AoE |
: A
(@) (b)

Figure 1.5  Plots of residuals versus displacement for rigid obstacle problem:
(a) the case wheral <g, (no contact) and (b) the case where

d =g, (contact).

Finally, although the solution to our simple model problem is readily guessed, we can see from
both cases that the plot Biversud is only piecewise linear; the kink in each diagram indicates
the fact that a finite tangent stiffness operates when contact is not active, changing to an infinite
effective stiffness imposed by Egs. (1.51) when contact between rod and obstacle is detected.
This contact detection therefore becomes an important feature in general strategies for contact
problems and introduces both nonlinearities and nonsmoothnesses into the global equations as

this rather simple example demonstrates.
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Linear Elastic IBVP

Introduction and Notation

Having reviewed some relevant nonlinearities in the context of an admittedly simple structural
element, let us begin to generalize our problem description to encompass a larger group of
continuous bodies. We begin this development by first reviewing the basic equations of linear
elasticity, where we assume small motions and linear material behavior. This discussion will
provide the basis for a more general notational framework in the next section where we will
remove the kinematic restriction to small motions and also allow the material to behave in an
inelastic manner.

The notation we will use in this section is summarized in Figure 1.6, where we have depicted a

solid body positioned in three-dimensional Euclidean spaﬁe3or . The set of spatiakpoints
defining the body is denoted 6y , and we consider the boud@ary to be subdivided into two
regions,I, and ; , where Dirichlet and Neumann boundary conditions will be specified as
discussed below. We assume that these regions obey the following

r,ary=o0Q . (1.52)
ryNrg=10

The unknown, or dependent variable, in this problem is , the vector-valued displacement
which, in general, depends uprri] Q and ttme

DS

Figure 1.6  Notation for the linear elastic initial/boundary value problem.

Equations of Motion

At any point inQ , the following statement of local linear momentum balance must hold:
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2
OT+f = pa_“'z. (1.53)
ot
Note thatlJ [T denotes the divergence operator applidd to , the Cauchy stress tensor. The

vectorf denotes the distributed body force(n , with units of force per unit volumegy and
denotes the mass density, which need not be uniform. Equation (1.53) represents the balance of
linear momentum in so-called direct notation; balance of angular momentum is enforced by the

assumption that the tensdr  is symmetric. We will frequently emptbgial notationin the
work that follows. Toward that end Eq. (1.53) can be reexpressed as

2
0 u,
T *+f = pat_z, (1.54)

where indices andj run between 1 and 3, and repeated indices within a term of an expression
imply a summation over that index, that is:

_ 2Ty
=1

One should take the notaticf)?nj to indicate partial differentiation with respegtto . When
using indicial notation repeated indices will always imply sums unless otherwise indicated.

As indicated above, the dependent variables araithe , so it is necessary to specify the relation

between the displacements and the Cauchy stress. In linear elasticity this is accomplished by two
additional equations. The first is the strain-displacement relation:

1
Ej =ugjy = 50U +uj; ), (1.56)

where the notatioml(i i) is used to denote the symmetric part of the displacement gradient. The

second equation is the linear constitutive relation betWgen  Eand , Which is normally
written via

Ti =G Eq - (1.57)

Note thatCy,, is the fourth-order elasticity tensor, to be discussed further below. Equations
,(1.56) and (1.57) can also be written in direct notation via

E=0u = %(Du +0u" (1.58)

and
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T = CE, (1.59)

where the colon indicates double contraction of the fourth-order tEnsibin the second-order
tensorkE.

The fourth-order elasticity tens@ris ordinarily assumed to possess a number of symmetries that
greatly reduce the number of independent components that describe it. It passgmses

symmetrywhich mean<g,, = Cg; , anditis also assumed to hneiver symmetrigs
meaning, for example, th&, = Gy = Gy = Gy . Another important property of
the elasticity tensor is positive definiteness, which implies in this context that

A Gj A >0 for all symmetric tensors A (1.60)

In the most general case, assuming the aforementioned symmetries and no others, the elasticity
tensor has 21 independent components. Various material symmetries reduce this number greatly,
with the most specific case being given by an isotropic material that possesses rotational
symmetry in all directions. In this case only two independent elastic constants are required to
specifyC, which under these circumstances can be written as

Cii = A0 O +U[Oy O +& O], (1.62)
whered; , the&Kronecker deltasatisfies
L if i =j
6” = 5 (1.63)
otherwise
andA andu denote théame parameterfor the material. These can be written in terms of the

more familiar elastic modulus and Poisson’s ratio via

Ev

N Tasm (1.64)
_E
M= 201+9) (1.65)

The quantityu is also known as thleear modulugor the material.

Substitution of (1.58) and (1.59) into (1.53) gives a partial differential equation for the vector-
valued unknown displacement field Full specification of the problem at hand must include
suitable boundary and initial conditions as discussed next.
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Boundary and Initial Conditions

Paralleling the earlier discussion of the one-dimensional example, we will consider the
possibility of two types of boundary conditions, Dirichlet and Neumann. Dirichlet boundary

conditions will be imposed on the regiby in Figure 1.6 as follows:
u(x,t) = o, t)ox 0o ,t0(o,T). (1.66)

Note thatti(x,t ) denotes a prescribed displacement vector depending, in general, on spatial
position and time. The simplest and perhaps most common example of such a boundary
condition would be a fixed condition that, if imposed throughout the time interval of interest

(0, T) and for all ofl", , would implyi(x,t) = 0

The other type of boundary condition is a Neumann or traction boundary condition. To write
such a condition, we must first define the conceptaction on a surface. If we use to denote
the outward normal to the surfaCg  at a paint I, , the traction vectar at is defined via

t =Tn , (1.67)
or in indicial notation

t.=T.n . (1.68)

Physically this vector represents a force per unit area acting on the external sutface at . A
Neumann boundary condition is then written in the current notation as

T((x, t)n(x)) = & ,t)Ox O ,t O(0,T). (1.69)

Note thatt & ,t) is the prescribed traction vector field'gnx (0, T) . One could identify
several examples of such a boundary condition. An unfixed surface free of any external forcing
would be described by =0 . A surface subject to a uniform pressure Igading , on the other

hand, could be described by setting ,t ) = —pn(x) , Where we assume a compressive
pressure to be positive.

With these definitions in hand, we recall the restrictions (1.5Z) on T and and physically

interpret them as follows: 1) one must specify either a traction or a displacement boundary
condition at every point dQ ; and 2) at each poind@f , one may not specify both the traction
and the displacement but must specify one or the other. In fact, these conditions are slightly more
stringent than required. For example, the problem remains well-posed if, for each component

directioni , we specify either the traction componént  or displacement component at each

pointx [0 0Q as long as for a given spatial direction, we do not attempt to specify both.
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In other words, we may specify a displacement boundary condition in one direction at a point
while specifying a traction boundary condition in the other. An example of such a case would be
the common “roller” boundary condition where a point is free to move in a traction-free manner
tangent to an interface (i.e., a traction boundary condition), while being constrained from
movement in a direction normal to an interface (i.e., a displacement boundary condition). Of
course, a multitude of other boundary condition permutations could be identified. Thus, while we
choose a rather simple boundary condition restriction, summarized by (1.52), for notational
simplicity, it is important to realize that many other possibilities exist and require only minor
alterations of the methodology we will discuss.

The final important ingredient in our statement of the linear elastic problem is the specification of
initial conditions. One may note that our partial differential equation (1.53) is second order in
time; accordingly, two initial conditions are required. In the current context these amount to

initial conditions on the displacememt and the velogity and can be rather straightforwardly
specified via

u(x, 0) = uy(x) onQ (2.70)
g—?(x,O) = vy(x) 0nQ, (1.71)

whereu, and/, are the prescribed initial displacement and velocity fields, respectively.

Problem Specification

We now collect the equations and conditions of the past two sections into a single problem
statement for the linear elastic system shown in Figure 1.6. For the elastodynamic case this
problem falls into the category of amtial/boundary value problefrsince both types of
conditions are included in its definition. Our problem is formally stated as follows:

Giventhe boundary conditions  dn, x (0, T) adod ©bpx (0, T) , the initial conditigns
andv, onQ , and the distributed body fofcen Q x (0, T) , find the displacement field on

Q x (0, T) such that:

2

oor+f = p2% onQx(0,T), (1.72)
ot

u(x,t) =a(x,t)onl,x(0,T), (1.73)

tk,t)=tk,t)onl;x(0,T), (1.74)
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u(x,0) = uy(x)onQ, (1.75)

g—ltJ(x, 0) = vy(x)onQ, (1.76)

where the Cauchy stre3s s given by
T = C(Ogu). (1.77)

Equations (1.72) through (1.77) constitute a linear hyperbolic initial/boundary value problem for
the dependent variable

The Quasistatic Approximation

Before leaving the elastic problem, it is worthwhile to discuss how our problem specification will
change if inertial effects are negligible in the equilibrium equations. This special case is often
referred to as thguasistatic assumptioand considerably simplifies specification of the

problem.

Simply stated, the quasistatic assumption removes the second temporal derivative of  from
(1.72) thereby eliminating the need for initial conditions (1.73) and (1.74). Such an
approximation is appropriate when the loadings do not vary with time or when they vary over
time scales very much longer than the periods associated with the fundamental structural modes

of Q. It is convenient, however, to maintain time in our description of the problem for two

reasons: 1) the loadings  aihdnd the displacement conditian  may still vary with time; and

2) when we consider more general classes of constitutive equations, we may wish to allow time
dependence in the stress/strain response. Accordingly, we state below a boundary value problem
appropriate for quasistatic response of a linear elastic system.

Giventhe boundary conditions dn;x (0, T) G, ®&nx(0,T) ,and the distributed body
forcef onQ x (0, T) , find the displacement field ~ 6nx (0, T) such that:

OOT+f = 00onQx(0,T), (1.78)
u(x,t) = a(x,t)onr,x(0,T), (1.79)
t&,t) =t ,t)onl x(0,T), (1.80)

where the Cauchy stre3s is given by

T = C(04u). (1.81)
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We note in passing that given a timel (0, T)

, Egs. (1.78) through (1.81) constitute a linear,

elliptic boundary value problem governing the dependent vanable
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Weak Forms

Introduction

A key feature of the finite element method is the form of the boundary value problem (or initial/
boundary value problem in the case of dynamics) that is discretized. More specifically the finite
element method is one of a large number of variational methods that rely on the approximation of
integral forms of the governing equations. In this section we briefly examine how such integral
(alternatively, weak or variational) forms are constructed for the linear elastic system we have
introduced.

Quasistatic Case

It proves convenient from notational and conceptual viewpoints to consider the quasistatic case
first. Accordingly, we recall Eqgs. (1.78) through (1.81) and explore an alternative manner in
which these conditions can be stated. We consider a collection of vector-valued funthians

we call weighting functions for reasons that will soon be clear. We require that these functions

w:Q - 0° satisfy
w= 0onrl,,. (1.82)

Furthermore, it is assumed that these functions are sufficiently smooth so that all partial
derivatives can be computed. Suppose we have the salutibigs. (1.78)-(1.81). We can then

take any smooth functiow satisfying (1.82) and compute its dot product with (1.78), which
must produce

w{OLOT+f) = 0onQ (1.83)

ateachtima (0, T) .We can then integrate (1.83)»ver to obtain
Z[wE(D (r+f)dQ = 0. (1.84)
Equation (1.84) can be manipulated further by noting that

wOOr) = 0Tw) —(Ow): T (1.85)

(product rule of differentiation) and by also taking advantage of the divergence theorem from
multivariate calculus:

éD qTw)dQ = J’(n Tw)dr . (1.86)
Q
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Note thatn is the outward directed normal 0@ , adfld is a differential area of this surface.
Use of Egs. (1.85) and (1.86) in (1.84) and rearranging gives

(Ow):TdQ = (wfdQ+ ((nCTw)dr . (1.87)
! A

Taking advantage of the symmetryTo&nd noting, from Eq. (1.67), that the surface tradtion
equalsTn, we can write:

(n OTw)dlr = ((wOTn)dlr = (witdr . (1.88)
i L i

We now recall restrictions (1.52), which tell us tA&x is the unidnof Tgnd . Since by

definitonw = 0 onl", , we can write

JWDtdl_ = J’WDtdI’+J’WDtdI’ = J’W[]t_dl_, (1.89)
Q u o o

where the last equality incorporates the boundary conditiert ,on

We collect these calculations to conclude

z[(DW):TdQ = g{WDfdQJrr[WDfdr’ (1.90)

which must hold for the solutiam of Egs. (1.78)-(1.81) for any satisfying condition (1.82).

In order to complete our alternative statement of the boundary value problem, the concepts of
solution and variational spaces need to be introduced. Let us defsautien spaces,

corresponding to time via
S; = {uju=da(t)onl, uissmooth (2.91)
and theweighting spac&Wia
W= {w|w= 0onTl ,, wis smooth . (1.92)

With these two collections of functions in hand, let us consider the following alternative
statement of the boundary value problem summarized by Eqs.(1.78)-(1.81):

Giventhe boundary conditions  dn, x (0, T) T, ®&nx(0,T) ,and the distributed body
forcef onQ x (0, T) ,findtheu OS; foreachtimed (0, T) such that:

Theory Manual Formulation of Nonlinear Problems - Weak Forms - Quasistatic Case 23



(Ow):TdQ = (wfdQ+ (wlikdr (2.93)
! e

for all wO W, whereS; is as defined in (1.9%)is as defined in (1.92), and where the Cauchy

stressT is given by
T = C(Ogu). (1.94)

Since it explicitly requires only a weighted integral of the governing partial differential equation
to be zero, rather than the differential equation itself, this statement of the boundary value
problem is often referred to as a weak formulation.

Based upon the above derivation of the weak form, it should be clear that the sohitigs.
(1.78)-(1.81) (sometimes referred to asgtreng forn) will satisfy our alternative statement
summarized by Egs. (1.93) and (1.94). Less clear is the fact that solutions of the weak form wiill
satisfy the strong form, as must be true for the two problem statements to be truly equivalent.
Although not established here this equivalency can be rigorously established; the interested
reader should consult [Hughes, T.J.R., 1987] for details. In the present discussion we simply
remark that the equivalent argument depends crucially on the satisfaction of (1.93)vfar\al

with the arbitrariness o rendering the two statements completely equivalent.

Peeking ahead to numerical strategies, we can also remark that approximate methods will in
effect narrow our definitions of the solution and weighting spaces to so-fiaiteelimensional

subspaces. Simply stated, this means that rather than including the infinite number ouismooth
andw satisfying the requisite boundary conditions in our problem definition, we will restrict our

attention to some finite number of functions comprising subseds of Wand

In so doing we introduce a difference between the solution of our (now approximate) weak form
and the strong form, where the degree of approximation is directly related to the difference
between the full solution and weighting spaces and the subsets of them used in the numerical
procedure.

Finally, it is worthwhile at this point to make a connection to so-cail&alal work methods that
may be more familiar to readers versed in linear structural mechanics. In this derivation we will
work in indicial notation so that the meaning of the direction notation statements above can be

reinforced. Accordingly, for a possible solutian of the governing equations, let us write the
following expression for the total potential energy of the system at hand:

1
P(u;) = éz[u(ij )Gkt Uk, 17dQ

—uuifidQ—r[luit_i dr} |

(1.95)
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Note that the first term on the right-hand side represents thetraial energyassociated with
u; , and the last two terms represent the potential energy of the applied Idadingst; and .A

virtual work principlefor this system simply states that the potential energy defined in (1.95)
should be minimized by the equilibrium solution. Accordinglyugt now represent the actual

equilibrium solution. We can represent any other, kinematically admissible displacement field via
u; +&w , wheree is a scalar parameter (not necessarily small) vand is a so-called virtual

displacement that we assume to obey the boundary conditions outlifie82) This restriction
onthew. causes; +ew  to satisfy the Dirichlet boundary conditions (hence the term

“kinematically admissible”) because the solution does. We can write the total energy
associated with any of these possible solutions via

1
P(uj +ew;) = éz[(“m ) TEWGj )G (Uger ) +EWp))dQ

(1.96)
_Z[(Ui + EW )fidQ_J(ui +ew )t dlr

We now note that if the potential energy associated wjith is to be lower than that of any other
possible solutionu; +ew: , then the derivativeR(fu, +ew;)  with respeettoe at0 (i.e.,

at the solutioru;, ) should be zero for amy satisfyingconditions(1.82) sinceu; is an

extremum point of the functidd. Computing this derivative of (1.96) and setting the result equal
to zero yields

Wi j )G Ugk,1)dQ

dl pu, +ew) = =0, (1.97)
defe =0 _g[WifidQ_r[Wit_idr

which must hold for allv.  satisfying the boundary conditiongn . Equation (1.97) can be

manipulated further by noting that
/N G =w;;: \C., E
(ij )Hkl (k,1) ) (j) ukl_ kl . (1.98)
= Wij )Ty =W T

The last equality in (1.98), while perhaps not intuitively obvious, holds because of the symmetry
of T;;
j
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1

Wi Ty = 5w +w; )Ty
1 . (1.99)
=5 Ty +w; Tj)
=W T
Use of (1.98) in (1.97) yields
z[W” T, dQ—z[vvifidQ—Jwi £.dr = o, (1.100)

which is seen to be nothing more than the indicial notation counterpart of (1.93). Summarizing,
we see that the weak or integral form of the governing equations developed previously can be
interpreted as a statement of the principle of minimum potential energy. It is because of this

alternative viewpoint that the weighting functions are sometimes called variations or virtual

displacements, with the terminology used often depending upon the mathematical and physical
arguments used to develop the weak form.

Despite the usefulness of this physical interpretation, it should be noted that the presence of an
energy principle is somewhat specific to the case at hand and may be difficult or impossible to
deduce for many of the nonlinear systems to be considered in our later study. For example, many
systems are not conservative, including those featuring inelasticity, so at best our thermodynamic
understanding must be expanded if we insist on formulating such problems in terms of energy
principles. Thus while the energy interpretation is enlightening for many systems, including

those featuring elastic continuum and/or structural response, insistence on this approach for more
general applications of variational methods can be quite limiting. It is noteworthy, for example,
that the derivation given in Egs. (1.83)-(1.90) depended in no way upon the system being
conservative or even upon the form of the constitutive equation used. We will exploit the
generality of this weighted residual derivation as we increase the level of nonlinearity and
complexity in the chapters to come.

Fully Dynamic Case

Another advantage of the weighted residual approach is that it can be straightforwardly applied
to dynamic problems. Before examining the dynamic case in detail, whose development parallels
that of quasistatic problems, it is worthwhile to emphasize again the definitions of the weighting
and solution spaces and to highlight the differences between them. Examining the definition of

S; in (1.91) and that diVin (1.92), we see th&,  dependstothrough the boundary

conditions on", , whil&\Vis independent of time. We retain these definitions in the current cas,

and pose the following problem corresponding to the elastodynamic system posed in the last
section:
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Giventhe boundary conditions dn, x(0,T) adod ©bpx (0, T) , the initial conditigns
andv, onQ , and the distributed body fofcen Q x (0, T) , find theu 0 S; for each time
t (0, T) such that:

2
Z[pW[P—uZdQ+Z[(DW):TdQ = iwadQ+Jth'dl‘ (1.101)
ot

for all w0 W, whereS is as defined in (1.91)Vis as defined in (1.92), and where the Cauchy
stressT is given by

T = C(0Ogu). (1.102)

In addition, the solution is subject to the following conditions at= 0
z[w[(u(O)—uo)dQ =0 (1.103)

and

J:W E%(O) —vVdQ = 0, (1.104)

both of which must hold foralvO W .

The integral form of the dynamic equations given in (1.101) is obtained just as was done in the
guasistatic case, by taking the dynamic governing partial differential equation (1.72) and
multiplying it by a weighting function, integrating over the body, and applying integration by

parts to the stress divergence term. The new ingredients in the current specification are the initial
conditions summarized by Eqgs. (1.103) and (1.104) but should be recognized by the reader as
simple weighted residual expressions of the strong form of the initial conditions given in Egs.
(2.75) and (1.76).

Before leaving this section, we reemphasize the fact that the weighting functions are time
independent while the solution spaces remain time dependent. This fact will have important
consequences later when numerical algorithms are discussed because, in effect, we will wish to

use the same classes of functions in our discrete representativasa®; . These
discretizations will involve spatial approximation, which in the casg, of , will leave the time
variable continuous in the discrete unknowns of the system to be solved.

This semidiscrete approadoo transient problems is pervasive in computational mechanics and
has its origin in the current context in the fundamental difference between the weighting and
solution spaces.

Theory Manual Formulation of Nonlinear Problems - Weak Forms - Fully Dynamic Case 27



Large Deformation Problems

Introduction

In this section we extend our discussion of the linear elastic problem to accommodate two
important features: potentially large motions and deformations, and nonlinear material response.
We will do this by introducing a more general notational framework in which we will work
throughout the text and then by examining in a fairly nonrigorous fashion how, provided certain
concepts are kept in mind, the equations governing large deformation initial/boundary value
problems are similar in form to their familiar counterparts from the small deformation theory.
Rigorous prescription and understanding of large deformation problems can only be achieved
through a careful examination of the concepts of nonlinear continuum mechanics, which will be
the concern of the next chapter.

Notational Framework

The basic system we wish to consider is depicted schematically in Figure 1.7. We consider a
body, initially in a location denoted iy , undergoing a time-dependent mgption  that describes

its trajectory through the ambient space (assumed hereldd be ). The set  is called the
reference configuratioand can be thought of as consisting of poXiisat serve as labels for the
material points existing at their respective locations.

Figure 1.7  Notation for large deformation initial/boundary value problems.

For this reason the coordinatésire often calledeferenceor materialcoordinatesWe assume,
as before, that the surfad®  ©@f can be decomposed into slipsets ', and , obeying

restrictions (1.52). The general interpretation of these surfaces remains the same: traction
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boundary conditions will be imposed 63  , and displacement boundary conditions will be

imposed o, . Full specification of these boundary conditions must be deferred, however, until
some continuum mechanical preliminaries are discussed.

We have mentioned that the motipn is, in general, time dependent. In fact, we could write this
fact in mathematical terms &sQ x (0, T) — 0% . If we fix the time argumenpt of , we obtain a

configuration mapping, , summarized ag, :Q - 03 , Which gives us the location of the body
attimet given the reference configuratiéh . Coordinates in the current loagti@n) of the

body will be denoted by

The current location is often called thgatial configuratiorand the coordinatesg, spatial
coordinates Given a material poinK 0 Q  and a configuration magpipng , we may write

x = ¢, (X). (1.105)

A key decision in writing the equations of motion for this system is whether to express the
equationsinterms ok JQ  or 0 ¢, (Q)

Lagrangian and Eulerian Descriptions

The choice of whether to use reference coordingtes or spatial coordinates in the problem
description is generally highly dependent on the physical system to be studied. For example,
suppose we wish to write the equations of motion for a gas flowing through a duct or for a fluid
flowing through a nozzle. In these cases the physical region of interest (the control volume
bounded by the duct or nozzle) is fixed and does not depend on the solution or time.

It could also be observed that identification of individual particle trajectories in such problems is
probably not of primary interest, with such quantities as pressure, velocity, temperature, and so
forth at particular locations in the flow field being more desirable. In such problems it is
generally most appropriate to associate field variables and equations with spatial points or in the
current notation, points . A system described in this manner is said to be utilizbbgie¢han
descriptionand implicitly associates all field variables and equations with spatial points

without specific regard for the material poids  involved in the flow of the problem. Most fluid
and gas dynamics problems are written this way, as are problems in hydrodynamics and some
problems in solid mechanics involving fully developed plastic flow.

When thinking of Eulerian coordinate systems, it is sometimes useful to invoke the analogy of
watching an event through a window: the window represents the Eulerian frame and has our
coordinate system attached to it. Particles pass through our field of view thereby defining a flow,
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but we describe this flow from the frame of reference of our window without specific reference to
the particles undergoing the motion we observe.

In most solid mechanics applications, by contrast, the identity of specific material particles is of
central interest in modeling a system. For example, the plastic response of metals is history
dependent, meaning that the current relationship between stress and strain at a point in the
medium depends on the deformation history associated with that material point. To use such
models effectively requires knowledge of the history of individual particles, or material points,
throughout a deformation process. Furthermore, many physical processes we wish to describe do
not lend themselves to an invariant Eulerian frame: in a forging process, for example, the metal at
the end of the procedure occupies a very different region in space than it did at the outset. For
these and other reasons, the predominant approach to solid mechanics systems is to write all
equations in terms of material coordinates or to usedgeangianframe of reference.

Returning to the notation summarized in Figure 1.7, we associate all field variables and equations
with points X [0 Q and keep track of these reference particles throughout the process. One may
note, in the last subsection, a bias toward this approach already; namely, we have written the
primary unknown in the problend( ) as a functionXdfl Q and (0, T)

Governing Equations in the Spatial Frame

With the above discussion as background, we turn now to the equations of motion governing the
motion of a medium. Interestingly if we adopt for the moment the spatial frame as our frame of
reference, the form of these equations is largely unchanged from the linear elastic case presented

previously. Let us fix our attention on some timel (0, T) and consider the current location
(unfortunately unknown to us) of the bofly . Over this redip(Q) , the following conditions
must hold:
OOr+f = paong, (Q), (1.106)
0, = ¢, ono, (), (1.107)
and
t =t on¢, (), (1.108)
subject, of course, also to initial conditiongat 0 . Some explanation of these equations is

necessary. The nabla operator  in (1.106) is to be interpreted as being with respect to spatial
coordinates

The acceleratiom is referred to spatial coordinates but is the (material) acceleration of the

particle currently ak ancii_t is to be interpreted as a given or prescribed location for particles
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on the Dirichlet boundary. We leave the constitutive law goverfiing  unspecified at this point
but remark that, in general, the stress must deperiq on through appropriate strain/

displacement and stress/strain relations. What we see from Egs. (1.106) through (1.108) is that
the equations of motion are easily written in the form inherited from the kinematically linear case
but that the frame in which this is done, the spatial frame, is not independent of the unknown

field ¢, but relies upon it for its own definition.

Thus although the equations we now consider are essentially identical in form to those from
linear elasticity, they possess a considerably more complex relationship to the dependent
variable. As will be provided in the next chapter, full and rigorous specification of this more
general boundary value problem requires an in-depth treatment of the continuum mechanics of
large deformations.

Before leaving this topic, an item that frequently causes confusion should be addressed. Although
we have written the governing equations in (1.106) through (1.108) in terms of the spatial
domain, this does not imply an Eulerian statement of the problem at hand. In fact, if we choose

(as we have done) to consider our dependent variable (in thigcase ) to be a function of
reference coordinates, the framework we choose is inherently Lagrangian. Another way of saying
this is that Egs. (1.106)-(1.108) are the Lagrangian equations of motion which have been
converted through a change-of-variables so that they are written in tekms of . In the remainder
of this text, the reader should assume a Lagrangian framework unless otherwise noted.
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